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LE'lTER TO THE EDITOR 

Exact critical exponents for two-dimensional dense polymers 

Bertrand Duplantier 
Service de Physique ThCorique, CEN-Saclay, 91 191 Gif-sur-Yvette Cedex, France 

Received 4 August 1986 

Abstract. Using conformal invariance and Coulomb gas results, we give the exact value 
in two dimensions of the 7 )  exponent of L dense polymers, attached by their extremities: 
vL=(L2-4) /8 .  The value in two dimensions of the y exponent of a dense branched 
polymer of fixed topology with nL L-leg vertices, L 3 1 is then deduced to be 

y =  C n ~ ( 2 - L ) ( L + 1 8 ) / 3 2 .  
La1 

These values correspond to a conformally invariant theory with central charge C = -2. 

Recently (Duplantier 1986a, b, hereafter referred to as I and 11), we have proposed 
an exact formula for the critical exponent y associated with a self-avoiding polymer 
network in two dimensions, for any fixed topology of the network (I), and we have 
given (11) exact contact critical exponents for a single self-avoiding walk. To do this, 
we used, besides renormalisation theory, information obtained from conformal invari- 
ance theory in two dimensions (Dotsenko and Fateev 1984) and numerical studies on 
strips (Saleur 1986a). 

The predictions were in quite good agreement with existing numerical simulations 
for star polymers (Wilkinson e? a1 1986), H-comb polymers (Gaunt et a1 1986) and 
contact exponents (Redner 1980 and references therein). The results applied to dilute 
polymer structures floating in a good solvent, and swollen by excluded-volume effects. 
In this letter, our aim is to derive similar results for dense self-avoiding polymer 
networks in two dimensions. By dense, we mean that the polymer fills, even in the 
thermodynamic limit, a finite fraction of the embedding lattice. To do this, we shall 
use conformal invariance applied to the low temperature phase (i.e. high fugacity in 
polymer language) of the O(n) n-vector model, in a vanishing small magnetic field, 
and in the limit n = O .  As is well known, the low fugacity or high temperature phase 
corresponds in contrast to polymers in a dilute solution (see, e.g., de Gennes 1979) 
or, in a non-zero magnetic field, to a semi-dilute solution (des Cloizeaux 1975). Dense 
polymers have been considered in various studies (Parisi and Sourlas 1980, Gujrati 
1985, Gaspari and Rudnick 1986 and references therein). Dense polymers may also 
have some connections with Hamiltonian walks (Kasteleyn 1963, Orland e? a1 1985 
and references therein), but the latter have certainly much less universal properties 
(see, e.g., Gordon e? a1 1976) than those of dense polymers, associated with the O( n = 0) 
model. 

To obtain our results for branched polymers of arbitrary topology, we first study 
(I)  one particular 'fuseaux' configuration of L polymer chains attached to each other 
by their extremities (figure 1). The polydisperse partition function of this network with 
fixed extremities at 0 and r on a lattice is 

0305-4470/86/161009 +06%02.50 @ 1986 The Institute of Physics L1009 



L1010 Letter to the Editor 

1 

O e r  O e r  
L 

Figure 1.  ‘Fuseaux’ network made of L chains attached by their extremities. 

where the sum is taken over all self-avoiding configurations U(0, r )  connecting 0 and 
r, of total length S( U ) ,  p being the fugacity. The critical fugacity is pc = CL-’, where 
CL is the self-avoiding walk effective connectivity constant. For /3 > pc,  the polymer 
will fill a finite fraction of the lattice. At the critical point 

ZL( r, 0, pc) - r-”,. (2) 

The critical exponent x L  depends on the side from which pc is approached: from the 
high temperature phase (low fugacity p < pc) or from the low temperature phase (high 
fugacity p > pc).  In terms of conformal invariance theory (Belavin et a1 1984, Dotsenko 
and Fateev 1984), 2, can be written as 

z L ( r ,  0, P c ) / Z ( P c )  = ( 4 L ( r ) + L ( O ) )  (3) 

where the 4L are conformal operators whose conformal dimensions are x L .  The 
conformal theory to which they belong will be diferent for p + pc and p + p:. Z (pc)  
in (3) represents the partition function of the O ( n )  model, n + 0 (its value also depends 
on the side from which pc is approached). In the dense phase, we find the new value 
of xL in two dimensions: 

XL = ( L2 - 4)/ 16. (4) 

This is done as follows. In the dilute phase ( p  < pc),  the value of x L  in two dimensions 
has been identified (Saleur 1986a, b) from numerical transfer matrix calculations on 
strips: 

XL = (9L2 - 4)/48 ( 5 )  

corresponding to the Kac formula (Kac 19791, for L = 2p - 1 ,  x L  = 2hp+1/2,3,2 and for 
L = 2p, x L  = 2hp+2,3, for a conformally invariant theory with central charge C = 0. To 
obtain x L  (4), we first note that the other x L  ( 5 )  (for L odd), coincides for n = O  with 
the magnetic exponents XH of the O( n) model given by Dotsenko and Fateev (1984): 

XL=Zp- ,  = Xq = [ L 2  - (2 - t)2]/4t 

= L2g/8 - ( g  - 1)2/2g 

where t or g are variables parametrising the O(n) model by (Cardy and Hamber 1980, 
Nienhuis 1982, 1984) 

(7)  
Here g = 2/ t is the renormalised coupling constant appearing in Nienhuis’ study of 
the O ( n )  model by the Coulomb gas method. According to Nienhuis (1982, 1984), 

n = -2 cos 27r/ t = -2 cos 7rg. 



Letter to the Editor L1011 

the high temperature phase of the O(n) model is given by the analytic determination 
of g which satisfies (7) and 1 < g < 2, whilst the low temperature phase corresponds to 

O < g < l .  (8) 

g = ;  t = 4  3 (9a) 

g = $  t =4. (9b) 

Hence for n = 0, we find for /3 < f lc  

whilst for p > pc 

Inserting (9a) into (6) recovers ( 5 ) ,  as expected, whilst (9b) gives our new result (4) 
for dense polymers, as expected. Of interest also is the value of the central charge C 
corresponding to the dense phase of the polymers. It can be found by using the 
correspondence between parameter t (7) and central charge C conjectured by Dotsenko 
and Fateev (1984) and established by Blote et al (1986) for O(n) and Potts models. 
Using (9b), we find for dense polymers the new result 

c = - 2  (10) 

(whilst for dilute polymers C = 0). Using the Kac formula (1979), we further check 
that the critical exponents xL (4) are in the conformal table of m = 1, parametrising 
C = l - 6 / m ( m + l ) :  

XL = 2hp/2,1/2 L=2p-1  

XL = 2h(p+1)/2.1 L = 2p. 

It is interesting to note that the Hamiltonian walk problem on a periodic Manhattan 
lattice also has C = -2. This can be seen by expanding the free energy of Kasteleyn's 
solution (1963) along one infinite direction on a strip of width w. Then identifying 
the universal finite-size correction term C7r/6w2, given by Blote et a1 (1986) and Affleck 
(1986), one finds C = -2. For L = 1 (a single polymer), equation (4) gives an 7 exponent 
v1 = 2x1 = -8, whilst for L z  2 the 7 exponents vL = 2xL are null or positive. T~ < 0 
corresponds to an effective repulsion between the extremities of a dense polymer in 
2~ (Gaspari and Rudnick 1986). 71 has been studied numerically on strips by Saleur 
(1986c), who also observed the value C = -2. For L=2,  the thermal exponent x2 is 
x2 = 2 - 1/ U, and hence x2 = 0 gives 

(11) 

which corresponds to a close-packed polymer in 2 ~ :  U = l /d ,  as it must. 
Let us consider now a dense polymer network (or branched polymer) of fixed 

topology (figure 2), made of a number X of large chains, attached together by nL L-leg 
vertices, L S  1 ( L =  1: dangling ends). The chains all have the same large length S. 
Then the partition function for the network scales as 

y = l  2 

(12) & - p - 1  

where y% is a critical exponent depending on the topology of %. Knowing the basic 
exponents xL, we are able (I)  to calculate yg. We find (in two dimensions) 

y s - l = u (  - c n'x,+2(v-1) - x  
L a  1 ) 
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Figure 2. A network made of N =  1 1  chains, Y =  5 loops and vertices with L = 1 , .  . . , 5  
legs, with n , , ,  n,=4, n4= 1 ,  n5=  1 .  

where .Ir = ZLal  nL is the total number of vertices of the polymer, and X is 2X = 
XLp,  Ln,. Applying results (4) and ( l l ) ,  we find for a dense network the new infinite 
set of critical exponents in two dimensions 

y o =  nL(2-L)(L+18)/32. (14) 
La 1 

Note that L = 2  does not contribute, as it must (trivial point insertions). For a single 
polymer chain ( n ,  = 2, nL+, = 0) the resulting exponent y is 

(15) 

Y L  = (-L2+3L+36)/32. (16) 

19 Y =16. 

For a dense L-star polymer, corresponding to nL = 1 ,  n ,  = L, we find the new result 

In I instead of (13), we used a similar equation in terms of basic vertex critical exponents 
&,, which read in terms of xL in d-dimensional space 

6 L  = - VXL + ( vd - 1) L/2. (17) 

Thus, for dense polymers in d = 2, (4) and (1 1) give the set of exact values 

6, = - ( L2 -4)/32. (18) 

A word of caution is necessary here. All along we have assumed that the general 
universal features of the O( n )  model will lead, when applied in the ordered phase, to 
a universal behaviour for n < 1 .  Thus we expect our result (equations (12) and (14)) 
for n = 0 to describe configurations of dense polymers which nearly ‘fill’ the space. 
There are subtleties due to boundary conditions which may have influence on such a 
dense phase. However, we expect that they do not affect the universal behaviour (12) 
and (14). 

Let us finally consider the contact exponents of a single polymer chain, defined in 
11. We select configuration of a SAW where fixed points of the SAW are very close 
together (figure 3) .  By coalescing these points, one obtains a graph 3 of contacts 
(figure 3). Then the probability Ps of making this set of contacts scales like (see 11) 

(19) Po = s-yw 
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Figure 3. A set of contacts inside a single polymer and the corresponding polymer network 
or graph 9. 

where Y is the probability contact exponent 

Using then (14) and (15) ,  we find for dense polymers 

Accordingly, the contact exponent 8% with which the different points of contact 
approach together in space (see 11) satisfies Yo = v(d2'+ e%), where 2' is the number 
of loops of graph %: 2'=XLrl  n L ( f L -  l ) + l .  Then Os for a dense single polymer 
in two dimensions is 

For instance, we find for the known e l ,  e2 exponents (des Cloizeaux 1980, Redner 
1980), which of them corresponds to the contact of one extremity of the chain inside 
the latter (el), and which to the contact of two interior points ( 02). el corresponds to 
a graph of contact 

(23) 

As expected, they are smaller than the dilute exponents which we have given in (11): 
8 ,  = 6, O2 = s: excluded-volume effects are screened in the dense phase. 

In summary, we have used results of conformal invariance in two dimensions and 
the analytic continuation to the ordered phase of the n = 0 vector model for obtaining 
new critical exponents of dense self-avoiding polymers in two dimensions. We have 
shown that these exponents correspond to a conformally invariant theory with central 
charge C = -2. We have proposed an exact formula for the exponent y of a general 
dense polymer network in two dimensions, as a function of its topology. 

n, = 1 ,  n3 = 1,  e2 to g2: n, =2,  n4= 1. Hence 
6 - 1  e,  =+ 2 - 4. 

We thank B Demda and H Saleur for several discussions. 
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